Visual Learning in Multiple-Object Tracking
نویسندگان
چکیده
BACKGROUND Tracking moving objects in space is important for the maintenance of spatiotemporal continuity in everyday visual tasks. In the laboratory, this ability is tested using the Multiple Object Tracking (MOT) task, where participants track a subset of moving objects with attention over an extended period of time. The ability to track multiple objects with attention is severely limited. Recent research has shown that this ability may improve with extensive practice (e.g., from action videogame playing). However, whether tracking also improves in a short training session with repeated trajectories has rarely been investigated. In this study we examine the role of visual learning in multiple-object tracking and characterize how varieties of attention interact with visual learning. METHODOLOGY/PRINCIPAL FINDINGS Participants first conducted attentive tracking on trials with repeated motion trajectories for a short session. In a transfer phase we used the same motion trajectories but changed the role of tracking targets and nontargets. We found that compared with novel trials, tracking was enhanced only when the target subset was the same as that used during training. Learning did not transfer when the previously trained targets and nontargets switched roles or mixed up. However, learning was not specific to the trained temporal order as it transferred to trials where the motion was played backwards. CONCLUSIONS/SIGNIFICANCE These findings suggest that a demanding task of tracking multiple objects can benefit from learning of repeated motion trajectories. Such learning potentially facilitates tracking in natural vision, although learning is largely confined to the trajectories of attended objects. Furthermore, we showed that learning in attentive tracking relies on relational coding of all target trajectories. Surprisingly, learning was not specific to the trained temporal context, probably because observers have learned motion paths of each trajectory independently of the exact temporal order.
منابع مشابه
Visual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot
The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...
متن کاملOnline multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملConvolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملEye-Tracking Method’ Usage for Understanding the Cognitive Processes in Multimedia Learning
Introduction: Designing multimedia learning environments should consist of the evidence-based study and principals about the human learning process. Eye tracking is a way based on the learner processing of learning materials which presented in multimedia learning environments. The aim of the study was to examine the use of the eye-tracking method to investigate the cognitive processes in m...
متن کاملA Quantitative Real-Time Analysis Of Object Tracking Algo- rithm For Surveillance Applications
Three major object tracking algorithms are evaluated in this paper. The performances of these algorithms for different video sequences are analysed. Object tracking is an important task in many surveillance applications, some problem and its difficulty depend on several factors such as pose change, various lighting condition, occlusion, dynamic object, scale and object motion, recent tracking a...
متن کاملVisual Tracking using Kernel Projected Measurement and Log-Polar Transformation
Visual Servoing is generally contained of control and feature tracking. Study of previous methods shows that no attempt has been made to optimize these two parts together. In kernel based visual servoing method, the main objective is to combine and optimize these two parts together and to make an entire control loop. This main target is accomplished by using Lyapanov theory. A Lyapanov candidat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008